Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть 1.
498 руб
В основе этой теории, объединяющей анализ с алгеброй, лежат идеи Чебышева о наилучшем приближении. Настоящий труд является введением в теорию непрерывных функций, рассматриваемых как предел полиномов данной системы, например, алгебраических многочленов или тригонометрических сумм. Далее, исследуется наилучшее приближение аналитических функций и дается его асимптотическое значение для функций, имеющих заданные особые точки (алгебраические и логарифмические, а также существенные). Ныне выпускаемая первая часть посвящена систематическому изложению общих теорем о полиномах наименьшего уклонения и решению основных алгебраических экстремальных задач, существенных для последующих аналитических приложений. Воспроизведено в оригинальной авторской орфографии издания 1937 года (издательство "ГРОТЛ"). Наконец, в последней главе рассматриваются проблемы приближения функций на всей вещественной оси при помощи многочленов и рациональных дробей, причем экстремальные свойства алгебраических функций соответствующим образом распространяются на определенные классы целых трансцендентных функций. 2012